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1. ABSTRACT

”"‘\34
Mathematical models for multistate reliability systems of

multistate components have been proposed by Barlow & Wu (1978),

El Neweihi et al (1978) and Griffiths (1981). Unlike the
approach used by Barlow & Wu, the other authors preferred to
establish their classes of models through sets of axioms, all
extending the early binary notions and all containing as special
cases the class of models suggested by Barlow & Wu. Since the

Barlow & Wu approach is essentially set theoretic, and since

in the other two approaches these models were not characterized
among the larger classes, one question that arises is whether
these models can be characterized by a set of axioms in the same
way as their counterparts. In this paper we do just that and

obtain a better understanding of Barlow & Wu models.
\ .
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2. INTRODUCTION, NOTATION AND TERMINOLOGY

A central problem in reliability theory is to determine
the relationship between the reliability of a complex system
and the reliabilities of its components, When the system and
its components are considered to be in either the functioning
(state 1) or the fail (state 0) state, the theory of binary
coherent structures, as developed in Barlow & Proschan (1975),
provides an adequate model that serves as a unifying foundation
for mathematical and statistical aspects of reliability theory.

However, in many practical situations, systems, as well as
their components, can assume a wide range of performance levels,
thus motivating the development of mathematical models which
generalize the binary. Models, representing multistate systems
of multistate components, have been investigated by Barlow & Wu
(1978), El-Neweihi et al (1978) and Griffiths (1981). While
the approach used by Barlow & Wu is based on the minimal path
and minimal cut representations of the binary coherent structure
functions (See Barlow & Proschan, 1975, p. 9), an axiomatic
approach is used by El-Neweihi et al and Griffiths to develop
their models. It turns out that the later developments include
as a special proper subclass of multistate system structures,
the one introduced earlier by Barlow & Wu.

In this paper, we establish verifiable conditions that
characterize the Barlow & Wu models, within a larger class of
multistate system sgtructures which contains all the models in-

troduced by El-Neweihi et al.
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Let S={0,1,...,m} denote the set of all possible states
of both the system and the components and let C={1,2,...,n}
be the component set. The vector x= (xl, “e ,xn), in Sn, denotes

the vector of states of each component and we write x <z when-
ever xiizi, for i=1,2,...,n. If x< 2 and xi<zi for some

i, we write x<z. Other special notation include:

(ki”f) (xl’"”xi-l’k’xi+1""'xn)’ keS, ieC

k = (k,k,...,k), keS.

The class of multistate system structures introduced by

El-Neweihi et al is the following:

DEFINITION 2.1. - A function §&: s? + S, is called an EPS multi- A
state system structure if:

(2.1) £ is monotone non-decreasing;

(2.2) E(k) =k, keS;

(2.3) for each ieC and keS, there exists xeS", such that

£(k;,x) =k and E(2,,X) #k if 2#k.

Let now P= {Pi: 1_<_i_<_p} be a Sperner covering of C,
i.e., a collection of non-empty subsets of C such that Pi ¢ PJ.

whenever i# j and UPi=C (When the covering condition is dropped

we shall refer to P simply as a Sperner system onC). It is l
easy to see that - ) Ehj
{Urovmeane 3 ]

OIS AP |

£(x) = max min x, , §es°, P {N_‘AM‘___”M_-

1<J <P ieP,




defines an EPS multistate system structure, and models of this
form were first suggested by Barlow & Wu. Multistate system
structures of this form will be referred here as BW. Notice
that the class P of subsets of C clearly satisfy the require-
ments for being the min path sets of a binary coherent structure.
A concept analog to that of a min-path vector for an EPS
multistate system structures has been introduced by El-Neweihi
et al which can be qsed, as in the binary case, to determine

system state.

DEHNITION 2.2 - A vector §es° is called a connection vector
to level k if ¢(:~:) = k. HRrthermore, if ¢(§) < k, whenever z <X,
we say that x is critical. 1/

For k=1,2,...,m let C, denote the set of all critical

k
connection vectors to level k, and for geck put

Cp(x) = {1:x, > k}.
Then, it is shown in El-Neweihi et al (1978) that for k=1,2,...,m,
we have v Ck(x) =C and that g£(x) >k if and only if x>z for

xeC
some zeCy End some £ > k.

3. CHARACTERIZATION OF BW MULTISTATE SYSTEM STRUCTURES

From the reliability point of view, the class of natural

model candidates for multistate system structures consists of

the functions §: st - S such that




(3.1) £ is monotone non-decreasing
and
(3.2) €(0)=m=~-£(m)=0,

and which from now on will bear the name of multistate system
structures (MSS). The class of all MSS's will be denoted by
M.

Note that conditions (3.1) and (3.2) respectively state
that system does not degrade when one or more components up-
grade, and that whenever all the components fail, or work at
best performance levels, the system either fail, or work at
its best performance level, respectively.

For MSS's, the notion of critical connection vector can

be easily extended to provide a corresponding version of the re-

sult mentioned on the last paragraph of section 2.

DEFINITION 3.1 ~ Let £: S® + S be an MSS. For k=1,2,...,m we
say that :~:eSn is an upper k-vector if E(J_:)zk. Furthermore, an
upper k-vector is called critical if E(z) < k whenever z < X. The

-~

set of all critical upper k-vectors will be denoted by Pk and

for xePk we shall let
P (x) = {i: x> o}. ///

THEOREM 3.2 - Let £:S® + S be an MSS. Then, for k=1,2,...,m,

5(5)31; iff X>2 for some geP

k'




oy

PROOF - Sufficiency is obvious. To prove necessity consider

the procedure of successively decrease the values of each com-~

) ponent of x, subject to the restriction that the value of £

1 does not drop below k. Since E(,Q) =0, this procedure stops
when we reach a vector geSn for which E(E)Zk and E(g) <k

whenever w< 2. Clearly x>z and zePk. /77

The class M contains as a special subclass, the EPS, and
- hence be BW, multistate system structures defined in Section 2.
What we shall do next is study the behavior of elements of M
under property P stated below, and show that this property cap-
tures the axiomatic essence of the BW multistate system struc-

tures when imposed on the suitable subclass of M.

(3.3) PROPERTY P: If k=1,2,...,m and E(Jf)zk, there exists

ze{0,k}” such that z<x and £(z) > k.

LEMMA 3.3 - Let &£: S + S be an MSS satisfying property P.

Then

£({0,k}?) = {0,k}, k=1,2,...,m

iff £¢{0,m}?) = (0,m}.

PROOF - The "only if" part is automatic. To prove the "if" state-
ment let us first notice that under property P, we must have
£(x) <k, for all xe{0,k}” and each k=1,2,...,m.

Since the assertion is now valid for k=m, assuming that

b -
3
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it holds for some k, 1<k<m, and letting §e{0,k-1}n, we have

(—k’:‘I—) x ¢ {0,k}" so that E(x) =0 if £(y)=0. If on

the other hand E(!) =k, it follows from property P that there

that y =

exists ze{0,k-1}" such that z<y and £(2) > k-1, and since

z2<x<y,we must have £(x)>k-1. The observation made in the

~ . = e

beginning of the'proof shows that in fact E(Jf) = k-1 and the

proof is complete.///

LEMMA 3.4 - Let &: s » S be an MSS satisfying property P and

assume that E;({O,m}n) = {0,m}. For k=1,2,...,m, we have xePk
. 1
iff i i“pl'

PROOF - Let xeP Since property P holds we have that xe{O,k}n ,

K
€{0,1}®,and from property P there exist ge{O,l}n

1
k
1

so that

W=
]

such that z < X, so that 5(%{:)3 1.

-

x and £(z) >1. Obviously z<
1

k
there must exist ge{o,l}n such that y<w and £(y)>1. Then,

To show that Xe P1 notice that if E(vg)z for some v~v<%§,
ky e{o,k}", E(ky) > £€(y) > 1 and from Lemma 3.3 we must have
E(k g) =k and kg <x, contradicting the fact that xePk.
The converse is proven using the same type of arguments.///
As a consequence of the results of Lemmas 3.3 and 3.4 we

have the following general result regarding MSS's.

THEOREM 3.5 - Let £: S® + S be an MSS. Then

(3.4) E(x)= max min X
- 1<j<p iePJ
for all §es°, where {Pj: 1_<_J_<_p} is a Sperner system on




c = {1,2,...,n}, iff £({0,m}®) = {0,m} and property P is

satisfied.

PROOF - It is easy to see that if £: S® + S is of the form

(3.4) then £({0,m}®) = {0,m} and property P holds.

e

If, on the other hand, these two conditions are satisfied,

we have

E(x)>k iff

o

>z for some ze¢P, (theorem 3.2)

'; iff

L

> kwfor some weP; (lemma 3.4)

iff min x, >k for some weP,
iePl(_\lv) -

b iff max min  x > k.
. v~veP1 iePle)

The result now follows if we observe that {Pl(v!); YePl} is a
Sperner system of subsets of C. ///
We remark at this point that the class of functions §: s? + 8

satisfying conditioms (3.1), (3.3) and

(3.5) £¢{0,m}"y = {0,m}

is still larger than the class of BW multistate system structures,
and the reason being is that the Sperner system {PJ: 1_<_j_<_p} in
the representation (3.4) of £ may not cover C.

Nevertheless this covering property can be achieved through the

following notion of component relevance:
(3.6) for each ieC = {1,2,...,n}, there exists xeS™ such that

£(0;:%) < &(my;Xx).

5
i
i
i
i
I
|




We thus have the following characterization.

THEOREM 3.6 - The function £: S® - S is a BW multistate system
structure iff (3.1), (3.3), (3.5) and (3.6) hold.

PROOF - Necessity is again obvious. To prove sufficiency all

we have to show, in virtue of Theorem 3.5, is that
U{Pl(y): Yepl} = C.

Fixing i¢C it follows from (3.6) that there exist xeS? such

that
£(0;,%x) < k < &(my,x)

for some k, k=1,2,...,m. From Theorem 3.2 there exist zePy such
that z< (mi,1~:) and obviously z; > 0, since otherwise z< (Oi,§)
and £(z) < k (recall that zeP, => ze{0,k}"). Therefore
iePk(z) or equivalently ie P1 (%z) by Lemma 3.4, and the proof
is complete./// -

In the diagram below we depict the various classes of multi-

state system structures involved in our discussion.

(3.1)+(3.3)+(3.5)

EPS

BW
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4, FINAL REMARKS
1) From the observation made right after Theorem 3.5,
it follows that the class functions satisfying condition (3.1),

(3.3) and (3.5) includes functions §: s® + S which may be

—————

constant in some of its arguments. In other words, it in-
cludes multistate system structures with "inessential' compo-
nents. Condition (3.6) enters here to require that every com-
ponent be essential in some sense. This condition was first
used by Griffith (1979) to define weakly coherent multistate
system structures. Under property P it follows from this

additional condition that u P,(y)=C.
¥€P1 -

A stronger result can actually be stated:
Proposition 4.1, Let £: SR -+ S is an MSS and keS-{0}. Then

U{Pk(}g)’ : \lvePk} =C

if and only if for every i<C there exists xeS™ such that

£(0;,%) <k< g(my,X). 111
The above result suggests a new notion of component relevance
which can be stated as
(4.1) "For every ieC and keS-{0} there exists xeS” such that

£(0,,%) < k< g(m ,x)".

This requires, in some sense, that every component be relevant
for system performance at all levels.
Recall that in (3.6) we introduced a notion of component rele-
i vance due to Griffith (1981) in order to characterize a BW MSS;

which is weaker than the one above. However in the presence of

property P, we have




"fﬁ:,PF""'-!-l-F-"""""'-"""""-"""""""“""““"L
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Proposition 4.2. Under property P, the notions of component rele-

vance (3.6) and (4.1) are equivalent. ///

2) It is interesting to remark that the class of EPS
multistate system structures for which property P hold does
| reduce to the BW ones in the simple case where m=n=2. However,
as the following example shows, this is not true in general.

EXAMPLE - S={0,1,2}, C={1,2,3}

X £(x)

v -~

(2,2,2)
(2,1,2)
: (1,2,2)
(2,2,1)
*(2,2,0)
(2,0,2)
, (0,2,2)
= (2,1,1)
(1,2,1)
(1,1,2)
(2,0,0)
*(0,2,0)
(0,0,2)
(2,1,0)
(2,0,1)
(1,0,2)
(1,2,0)
(0,2,1)
(0,1,2)
(1,1,1)
(1,0,1)
(1,1,0)
(0,1,1)
(1,0,0)
(0,1,0)
(0,0,1)
(0,0,0)

[ V]
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This function £ verifies the conditions of definition 2.1

and therefore is an EPS multistate system structure. It can

also be checked that property P holds for the function £. How-
ever the two starred points show that (3.5) is not true and that

£ is not of the B-W type.

3. After this paper had been written, it came to our know-

ledge that other forms of characterizing BW multistate system
structures were developed by Natvig (1981) and Block & Savits
(1981). Their results however differ from ours in the sense
that no explicit directly verifiable conditions on § are given.
We add however the following additional remarks that relate
our results with the Natvig characterization.

Assume that £: 8® + S is an MSS and that for some keS-{0}
the following property is verified:
(4.2) "If E&(x) >k, there exists ze{0,k}” such that z<x
and £(§)glk", i.e. property P introduced in the preceding
section holds just for some level keS-{0}. It is easy to see that
if keS-{0} is one of the levels for which (4.2) holds and

XeP, , we must have x¢{0,k}® and consequently

E(x) >k iff max min xiz_k .
- yePk iePk(y) !

which again follows from Theorem 3.2. This can be reworded as

E(x) >k 1ff § (o (X)) =1

for some binary, not necessarily coherent, monotone structure
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function Ek’ where u.k(x) € {0,1}" has i-th component equal to

1l iff x. >k. Furthermore, it follows from proposition 4.1

i
that the binary monotone structure function E;k will be coherent

iff for every ie<C there exist xS such that
E(Oi,§) <k< E(mi,g)

We recall that an MSS £: S® - S is defined by Natvig to
be a multistate coherent system of type 2 iff there exist binary

conherent monotone structure functions 51,52, .- 'Em such that
€(x) >3 <=> g (o, (x))=1, k=1,2,...,m.

From the observation made above we have

THEOREM 4.3 - An MSS £: S8® + S is a multistate coherent system

of type 2 iff (3.3) and (3.6) hold.

PROOF - Illows immediately from above observations and proposi-~

tion 4.2. ///

As a final remark we add the following more explicit result
that combines our approach with that of Natvig's, whose proof

we omit.
n

+ 8

THEOREM 4.4 - A multistate coherent system of type 2, &: S

is a BW-MSS iff £({(0,m}®) = {0,m}.
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